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The Organization and Performance of a
TREAT-Based Production System Compiler

Daniel P. Miranker and Bernie J. Lofaso

Abstract—Performance issues often prevent prototype production sys-
tem programs from scaling to large deliverable systems. In this paper,
we will describe an ensemble of techniques that compile OPS5 production
system programs to executable machine code and demonstrate an increase
in the execution speed of production system programs by two orders of
magnitude over the commonly used LISP-based OPS5 system.

The compiler is based on the TREAT incremental match algorithm. In
this paper, we present a version of the TREAT algorithm, formulated
in relational algebra and prove the algorithm correct. The compiler
employs optimization techniques derived from relational database sys-
tems. Furthermore, the combination of the TREAT algorithm and the
compiling techniques has substantially reduced the proportion of time
spent in the match phase below the “greater than 90%” figure often
cited by developers of other production system environments. To show
that these results are not an anomaly of the implementation we compare
our performance to the newest optimized RETE-based OPS5 compiler
recently released from Carnegie Mellon University.

Index Terms—Compiler, expert system, incremental match algorithm,
OPSS, optimizing compiler, production rule language, production system.

I. INTRODUCTION

RODUCTION-SYSTEMS, or production-rule languages,

have become an established means of encoding expertise into
comphter programs and rapidly prototyping ill specified systems
[6]. Most of the available production-system development
environments execute production systems by compiling them into
an intermediate structure or match network. The network is then
used as an argument to a fixed production-system interpreter.
The interpretive overhead of these systems is large and often
prevents small-scale prototypes from evolving into full-scale
deployable systems. Therefore, it is common for application
developers to rewrite compute intensive portions of a prototype
production system program before deploying the program. In this
paper, we will describe an ensemble of techniques that compile
production system programs to executable code and demonstrate
an increase in the execution speed of production system programs
by two orders of magnitude over commonly used interpretive
systems.

Evaluating the satisfaction of a set of production rules using
simple matching techniques is computationally expensive and
wasteful.! An important development that led to the effective exe-
cution of production system programs began with the observation
that the actions of a fired rule affect only 2 smlall proportion of
the working memory and that most of it remains the same from
cycle to cycle [5]. Rather than reevaluating the rule system each
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! Readers unfamiliar with production system languages should first read
Section I-A.

cycle, incremental match algorithms have been developed that
compute incremental changes to the set of satisfied rules from
incremental changes to the working memory. The RETE match
is the most commonly used incremental match algorithm [5]).
Several other incremental match algorithms have appeared in the
literature [20], [18], [15] as well as refinements to the RETE
match [12], [4].

The incremental match problem appears in many other areas.
It underlies the constraint-based inheritance methods used in
object systems [25]. Updating database views in the presence
of dynamic changes to the base relations is a specialization of
the incremental match [2]. The semi-naive evaluation of Datalog
programs is a specialization of the TREAT incremental match
algorithm [24].

The compiler described herein, OPS5c, is based on a sequential
version of the TREAT incremental match algorithm. The TREAT
incremental match algorithm was first developed as a parallel al-
gorithm [14]. TREAT is much less space intensive than the RETE
match. In a parallel computer an algorithm’s space requirements
often translate into communication and contention overhead [22].
Serendipitously, it was determined that the TREAT algorithm
outperforms RETE, even in a sequential environment.

The compiler is written in C using the standard Unix compiler
tools and produces C as its target code. The resulting C code
must then be compiled for the target machine, thus forming a
portable system. We show that using the TREAT algorithm we
can compile LHS patterns into very short, compact code segments
such that most data references can be kept local to the fast
registers of the processor.

We have used this compiler to extend our experience with
optimization and indexing techniques for rule-based systems. We
have determined that very detailed optimizations may only be
worthwhile in the presence of detailed cost information and that
ultimately the performance gained from the cost data is probably
modest. The optimization techniques employed in OPS5c¢ create
a distinct optimized code sequence for each condition element of
cach rule. This method can lead to very large program images.
However, the code generated by the compiler can be organized
to have good locality properties with respect to virtual paging
systems. We have found that the single most important factor
in the performance of a production system may be the care
with which the production system environment is integrated with
the memory hierarchy of the host computer. For example, we
have found that, without care, dynamic memory management
can consume as much as 60—-70% of the execution time of a
production system program [10].

The OPSSc compiler produces the fastest sequential OPS5
executables. Of greater consequence, where it has been previ-
ously reported that the match phase of the production system
cycle requires greater than 90% of the total execution time, the
compilation and optimization techniques in the OPS5c compiler
have substantially reduced this proportion, often to below 50%.
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Fig. 1. An OPS5 production rule.

The reduced proportion of time spent in match could be obtained
by implementing the remaining portions of the system poorly.
To show that these results are not an anomaly of the imple-
mentation we compare our performance to the newest optimized
RETE-based OPS5 compiler, ParaOPSS5, recently released from
Carnegie Mellon University [8].

In the remainder of the Introduction we define production
systems, give an example of a rule in OPS5 syntax, and briefly
describe the benchmarks used for this paper. Section II presents
a formulation of the TREAT match algorithm using relational
algebra and gives a proof of correctness. The organization
of the compiler is described, Section III, followed by perfor-
mance results, Section IV, and the effects of join optimization,
Section V.

A. Production Systems and Terminology

In general, a production system is defined by a set of rules,
or productions, that form the production memory together with a
database of current assertions, called the working memory (WM).
Each production has two parts, the left-hand side (LHS) and
the right-hand side (RHS). The LHS contains a conjunction of
pattern elements that are matched against the working memory. A
pattern element is also called a condition element (CE). The RHS
contains directives that update the working memory by adding
or removing facts, and directives that affect external side effects,
such as reading or writing an I/O channel.

In operation, a production system interpreter repeatedly exe-
cutes the following cycle of operations:

1) Match: For each rule, compare the LHS against the current
WM. Each subset of WM elements satisfying a rule’s LHS
is called an instantiation. All instantiations are enumerated
to form the conflict set.

2) Conflict Set Resolution: From the conflict set, choose
a subset of instantiations according to some predefined
criteria. In practice, only a single instantiation is chosen.

3) Act: Execute the actions in the RHS of the rules indicated
by the selected instantiations.

Fig. 1 contains an example of a production rule written in
OPSS5 syntax that will be used in examples below [3]. Working
memory elements (WME’s) in OPSS$ are represented by an initial
constant denoting a record type or class name. The constant
is followed by a list of attribute value pairs. Attribute names
are prefixed with a caret. Condition elements may be negated.
Negation is represented in OPS5 by a “—” character and is
defined as set difference [24].

It is convenient to make an analogy between the LHS of OPS5
rules and relational database queries. We can view the WM as a
set of relational tuples where the class names represent relation
names and the OPSS5 attribute names represent the attribute names
of the tuples. So defined, matching the constants appearing in
a rule’s condition element is analogous to the relational select
operator. The binding of variables between CE’s is analogous to
performing a database join. Thus, we refer to two distinct stages
of the matching process, the select phase and the join phase.

TABLE 1
BENCHMARK STATISTICS
System Number of Average Number of
Rules Size of WM Rule Firings
Waltz 33 2 70
Jig25s 6 50 58
Mapper 236 1143 84
Mesgen 143 34 138
Robot 75 15 410
Tourney 17 123 528
MAB 13 11 14
Weaver 637 152 751
Rubik 70 287 326

B. The Benchmark Suite

A number of OPS5 programs were used as benchmarks for the
systems described in this paper. Due to the rapid evolution of the
compiler and the gathering of data over time it is not possible
for us to report meaningful data for all these benchmarks for
each and every table. A brief description of these programs is
provided here. Table I summarizes statistics about the programs.

« Waltz: A program that executes the Waltz constraint algo-
rithm for labeling a blocks world drawing [26].

+ Robot: A program that plans the movements for a robot arm.

« Tourney: A program that schedules players for a bridge
tournament.

+ Jig25: A simple jigsaw puzzle solver.

+ Mesgen: A program that generates the daily news report on
the behavior of the Dow Jones stock market index.

+ Mapper: A program that plans a route between two points
in New York City.

¢ MAB: Monkey and Bananas.

+ Weaver: A VLSI box router [21].

« Rubik: A program that solves Rubik’s cube.

II. THe TREAT ALGORITHM

It is useful when evaluating a rule system to maintain an
index structure, called an alpha-memory, for each CE in the rule
program [11], [5]. An alpha-memory provides fast access to those
WME’s that satisfy each CE independent of the satisfaction of
the other CE’s.

To describe the TREAT match we will assume that, without
loss of generality, a rule is composed of a number of positive
CE’s followed by zero or more negated CE’s. We will further
assume that there exists a set of alpha-memories, R;, one for each
positive CE and set of alpha-memories, N;, one for each negated
CE. Using relational algebraic notation, the contribution to the
conflict-set of a single rule is defined as

CS=(R1><1-~-1><1R,l)—(~-((R1><1~-~|><1R,,><N1)><N2)
...p(Nm)

where n,m are, respectively, the number of positive and negated /
CE’s. To simplify the notation, define R, N, S, and V such that

CS=R-(Rx N)
CS=R, 8- ((RxN)x V).
A rule is called an active rule if V;, R; # ¢. A rule can be
satisfied only if it is active.

In the parallel version of TREAT, each working memory
update is applied to the alpha-memories concurrently. These
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updates are accumulated and the join phase for each rule may
then be processed in parallel. In the sequential version of TREAT,
the steps are executed in depth-first order. Each update is tested
for membership in each alpha-memory. If the update (newly
created WME) is a member of the alpha-memory the join code
is called immediately and the conflict set is updated.

The ability to share code for common rule subexpressions, first
proposed in the context of the RETE match [5), appears to derive
from the sequential depth-first evaluation of the matching and is
not specific to either match algorithm. Although sharing was not
implemented in OPS5c is should be apparent from the section
on code generation, Section III-B, that the implementation of
sharing would be a simple additional optimization of the current
system.

In OPS5c alpha-memories are represented as linked lists. A
WME is processed by hashing its class type to determine the
subset of alpha-memories that are effected and then sequen-
tially testing the WME for membership in each of those alpha-
memories. If a test confirms membership in an alpha-memory the
alpha-memory is updated. Updating an alpha memory results in
either adding or removing a pointer to the WME. The updated
alpha memory may correspond to either a positive or a negated
CE. If the rule is active, one of these four possible actions is
used to update the conflict set.

Case 1: Adding an element 7 to the alpha-memory of a positive
CE.

Without loss of generality assume that the element ¢ is added to
Ry. Let Ry = R, U tand CS' represent the conflict set after ¢ has
been added. We call ¢ the seed working memory element, since it
will root the search for new instantiations. If ¢ is an element of
R, we call the ith CE the seed CE. The action of TREAT in this
case is to add new instantiations to the conflict set that contain a
reference to the seed element. We may express this incremental
update operation to the conflict set as

CS' =CSU(t S -t S x N).

The proofs of correctness for cases 1, 3, and 4 are omitted.
The reader may reconstruct them by following the outline of the
proof of case 2.

Case 2: Deleting an element ¢ from the alpha-memory of a
positive CE.

Without loss of generality assume that the element ¢ has been
removed from R;. Let R{ = R, — ¢ represent incrementally
removing a WME, ¢, from R,. The action of TREAT in this case
is to examine the conflict set for any instantiations that contain
a reference to ¢ and remove them from the conflict set. We may
express this incremental update operation to the conflict set as

CS'=CS-CSxt.

Proof of correctness:
CS=R{<S-R xSxN
=R ~t)>8—(Ri—t)aSxN
=((Ri>a8) - (ta8))— (R, Sx N)

—(t= S x N))
= (B 8)~ (R SxN)—-(ta S§x N))
—(t=S) @
=(C8Ut=Sx N)—(t S) 3)
=CS—(t= 8S)
=C8 - (CSxt). O

Let A, B, and C represent sets. The proof moves from line
1 to line 2 by using the set identity (A — B) — C =
(A — C) — B. The next step of the proof uses the set identity
A-(B-0C)=(A-B)U(AnNnBNC).

Case 3: Adding an element ¢ to the alpha-memory of a negated
CE.

Without loss of generality assume that the element ¢ is added
to Ni. Let N{ = N; U t. The actions of TREAT in this case are
to remove instantiations that may have been invalidated by . We
may express this incremental update operation to the conflict set
as

CS' =CS— (Reat)x V).

Proof omitted.

Case 4: Deleting an element ¢ from the alpha-memory of a
negated CE.

Without loss of generality assume that the element ¢ has been
removed from N;. Let N = N; — t. The actions of TREAT
in this case are to add instantiations to the conflict set that may
have become eligible by removing ¢. However, there may be other
elements in N, that prevent any instantiations from entering the
conflict set. We may express this incremental update operation
to the conflict set as

CS'=CSU(Rt— (R N)x V).

The proof of case 4 is omitted. A proof can be developed by
defining the two subcases determined by the following lemmas.
The proofs of the subcases follow the same outline as the proof
of case 2.

Lemma 1: Either RKtNRX N =¢ or Rt C R Nj.

Since ¢ is a single tuple the semijoin of R x ¢ is computed
using a single value. If there exists a tuple in R x ¢ that is also
in R x N then every tuple in R ix ¢ will also be in R x Nj.

Corollary: If Rxt N R x N| = ¢ then R x N/ =
Rx N -Rxt.

Corollary: If Rxt C Rx N{ then Rx N =Rx N,. 0O

III. Tue CoMPILER

A. Organization

The OPSSc compiler is organized conventionally [1]. The
front-end, written using LEX and YACC, parses the OPS5 source
into an intermediate form. The code generator is driven by the
intermediate form and the symbol table and produces C code as
its target. Our optimizations are performed on the intermediate
form. We assumed that the C compiler that produces the final
executables would perform lower level optimizations.

A nontrivial aspect of the compiler was to capture the typing
flexibility and data representations that are normally part of
symbolic computing environment. OPS5c¢ represents the values of
working memory elements as vectors whose elements are of type
lisp-atom, where lisp-atom is defined as a union of the C types
needed to capture the LISP types allowed in OPSS5, including
symbol. To assure consistency of token ids the compiler tokenizes
all the strings appearing in the OPS5 source and produces a static
component of a run-time symbol table. Although it is commonly
assumed that C programs are much faster than LISP programs,
the representation of LISP data structures in C is larger and
slower than the representation of those structures by a good LISP
system.

Part of OPS5c is a 50K byte run-time library. Besides sup-
porting a LISP-like symbol table, the library includes an OPS5
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TABLE I
PROPORTION OF EXECUTION TIME SPENT
IN DYNAMIC MEMORY MANAGEMENT

System With C Fixed Block
malloc() and free() Allocator
Jig25 42% 10%
Mapper 2% 5.4%
Mesgen 37% 1%
Robot 72% 12%
Tourney 13% 2.9%
Waltz 64% 10%

command interpreter with debugging features, functions that
manipulate lists, and a fixed block memory allocator. Initially
OPS5c used the standard C dynamic memory allocation functions
malloc() and free( ). However, timing profiles of early versions
of the compiler revealed that some programs spent over half
of their execution time in dynamic memory management. The
introduction of fixed-block memory allocation for each of the
two most commonly used data structures reduced the proportion
of time spent in dynamic memory management to 12% or less.
See Table II.

An earlier TREAT-based system written for the DADO parallel
computer performed very well on conventional machines for
small programs but thrashed for larger programs {13]. It has
been observed, as a consequence of the research into the parallel
execution of production system programs, that production system
programs display memory locality properties similar to those of
conventional computer programs [18], [14], [7]. The average
size of a production system working set varies from 2 to 30
rules depending on the particular production system program and
underlying match algorithm.

The OPS5c code generator produces code in three sections
in order to exploit the inherent locality of production system
programs. The output of each section from the code generator
is loaded contiguously in memory. The three sections produced
correspond to procedures for executing the select and join
operations of match and the RHS actions. For a given change to
working memory many more select tests are performed than join
sequences and many more join sequences are executed than RHS
actions. Each of the three operations requires progressively larger
code segments. By not intermingling select operators with join
code the selected operators are localized to one part of memory.
When control passes to the join phase instructions are localized
to another part of memory. Although the executables produced
by the OPS5c compiler can be very large, we have yet to find
a system for which paging time for instruction (text) pages is a
problem.

B. Code Generation

The version of the OPS5c system with indexing has been
described elsewhere [16]. In this version, alpha-memories are
represented as linked lists and accessed sequentially. Additions
to the working memory made from the top level are processed by
hashing their class attributes to a bucket containing the select tests
for each CE containing that class. When a new WME satisfies
a set of select tests a pointer to it is added to the corresponding
alpha-memory. A set of backpointers is maintained for each
. WME such that no matching is required to remove WME’s from
alpha-memories. For additions to the WM that result from an
RHS action the class is usually known a priori and the hashing
step is skipped.

join_1(){ gi0 = nev_wme;
VAR_BIND(0,gi0,1)
WME_BIND(2,gil)
TEST(test_eq,0,gil,1)
VAR_BIND(1,gil,2)
NFILTER_1(3)
TEST(test_eq,1,8i2,2)
NFILTER_2
gi3 = NULL;
POS_CREATE_INST(0,3) }}}}}

Fig. 2. Sample join sequence for the first CE of the rule in Fig. 1.

The code generator produces a join function for each possible
seed CE. This organization allows the join optimizer to develop
an optimum permutation of the joins starting from each CE. The
variables of the seed element are bound and the remainder of the
joins are computed depth-first by nested loops. Thus, a do-while
is generated for each CE other than the seed CE. Each do-while
scans its corresponding alpha-memory list testing WME’s for
consistent variable bindings and creating new variable bindings
as appropriate. If a consistent binding is found the remaining
variables for the CE are bound and the next do-while is entered.
Although negation in OPSS is defined as set difference, negated
CE’s can be implemented as filters. These filters are implemented
as loops which scan negated alpha-memories and reject the
most recent CE bindings if the negated alpha-memory contains
an element matching all previous variable bindings. When the
innermost test is satisfied, a new instantiation has been computed
and is added to the conflict set.

The join phase code generator assembles variants of four basic
macros WME_BIND, TEST, VAR_BIND, and NFILTER. The
macro sequence for the join function for the first CE of the
example rule is illustrated in Fig. 2. A pointer is assigned to the
seed element and variables in it are bound using the VAR_BIND
macro. The arguments to the VAR_BIND macro are a variable
identifier, a working memory element pointer, and an attribute
offset into the working memory element. Where possible, the
compiler exploited the C “register” declaration to force variable
bindings and index pointers into the registers. We expect RISC
optimizing compilers to override our register declarations and
exploit the large register sets available in modern processor chips.

After the seed pointer and variable bindings are assigned, loops
must be set up to scan each alpha-memory. The WME_BIND
macro initializes the pointer for a loop and sets up a do-while. The
next innermost do-while is entered when the pattern predicate
applied by TEST passes. Note that one TEST macro is inserted
for each variable that must be tested. The loops for the filters for
negated CE’s do not nest. Thus, the NFILTER is composed of two
parts. The C definitions of each of these macros is illustrated in
Fig. 3. Fig. 4 contains an Assembly language sequence that could
be generated by the compiler. Notice that the code is extremely
compact and that all but two data references per loop are local
to a processor’s fast registers.

IV. PERFORMANCE RESULTS

Table III shows the execution time and speedup of the OPS5c
compiler with seed optimization compared to the LISP-based
OPSS5 system that is distributed from Carnegie Mellon University.
Both systems were run on an HP9000/370, a Motorola 68030-
based workstation. The compiled executables are up to two orders
of magnitude faster than the LISP-based OPSS5 system.
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#define WME_BIND(amem_num,wme_ptr)
ResetAMemScan(&amem[amem_num] ) ;
while (wme_ptr = ScanAMem(&amem[amem_num])) {

#define VAR_BIND(var_num,wme_ptr,attr_offset)
var[var_num] = GetWmeAttr(wme_ptr,attr_offset);

#define TEST(test_name,var_num,wne_ptr,attr_offset)
if (!test_name(GetWmeAttr(wme_ptr,attr_offset),var[var_numl))

#define FILTER_1(amem_no) \

ResetAMemScan(&amem[amem_nol); \
while (wme_id = ScanAMem(&amem[amem_no])) { \

if (

#define FILTER_2 \

) break; \
} \
if (wme_id != NULL) \
continue;
Fig. 3.

Primitive macros for TREAT join code.

/* structure declaration for alpha and beta memories */
struct alpha_mem {alpha-memory *next; wme *umep; };

register wme *Rnewwme;

/* pointer to the new working memory element */

register struct alpha-mem *r2, *r4; /* pointers for scanning alpha mems */

register pattern-vars r<x>, r<y>;

/* registers to hold bound variables */

Assembly code for TREAT match of the first CE of the example rule.

;Bind <x> from the seed

;Set up alpha-memory pointer chain
;Get pointer to the wme

;test <x>

;propagate token?

;test for end
;bump pointer

;bind <y>
;Set up alpha-memory peinter chain

;If variable binds, instantiation
;fails
;Test for last alpha-memory element

entry-Ci: mov ai(Rnewwme), r<x>
C2-init: mov Qalpha-ce2, r2
C2-loop: mov 4(r2), r3

cmp a1(r3), r<x>

jeq C3-init
C3-fail:
C2-next: cmp r2, mnil

jeq done

mov @r2,r2

jmp C2-loop
C3-init: mov a2(r2), r<y>

mov Qalpha-ce3, r4
C3-loop: mov 4(r4), r5

cmp a2(r5), r<y>

jeq C3-fail
C3-next: cmp r4 nil

jeq C3-pass

mov Qr4, r4

jmp C3-loop
C3-pass: Call make-instantiation

jmp C2-next

Fig. 4. Compact TREAT assembly code.

Table IV shows the proportion of time spent executing each
part of the production system cycle for three OPSS benchmark
programs. The match time is broken into its two subphases. Only
a modest amount of time is spent in conflict set resolution. The
miscellaneous category is the time spent in miscellaneous utility
functions and cannot be easily proportioned among the other
phases. In none of these programs, nor in any of the others
tested by Lofaso, did the total match time exceed 90%. The

highest proportion of time spent in match by any system was
by the Tourney program which spends only 80% of its time in
match.

To demonstrate that the reduction in match time is not an
anomaly of our system we compare the execution time of the
output of the OPS5c compiler to that of the ParaOPSS com-
piler. The ParaOPS5 compiler is a parallelizing OPSS compiler
developed at Carnegie Mellon University based on the RETE
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TABLE 1II
EXECUTION TIME IN SECONDS COMPARING OPS5C
AND THE LISP OPS5 INTERPRETER FROM CMU

System OPS5¢ LISP OPS5 Relative Speed
Tourney 6.3 1142.6 1814
Jig25 04 284 71.0
MAB <0.1 1 >60
Rubik 36.7 2760 75.2
Weaver 33.6 1253 372
TABLE IV

PERCENT TIME SPENT IN EACH PART OF THE CYCLE

Match

System Select Join Total Match  Conflict Set ~ Act Misc.

Mapper 238 14 252 0.5 283 459

Waltz 26.6 179 445 1.8 227 310

Tourney 3.6  76.7 80.3 2.0 75 101

Weaver 324 420 74.4 3.64 185 711
TABLE V

EXECUTION TIME IN SECONDS COMPARING
ParaOPS5 AND OPS5c ON AN ENCORE MULTIMAX

System ParaOPS5 OPS5¢ Relative Speed
Tourney 46.26 22 2.15

Jig25 15 11 14

MAB 0.43 0.1 [ 43

Rubik 127 119 1.07

match. In its optional sequential mode, ParaOPS5 is similar in
structure to OPS5c. ParaOPS5 has a large run-time library written
in C that provides many ancillary routines but produces in-line
matching code. The differences between the two compilers are,
ParaOPS5 is based on the RETE match, it supports only two
LISP atom types, it produces native assembler code for the
match portion of its target code and thus can allocate values to
registers and avoid the inefficiencies introduced by the portable
system.? Last, ParaOPS5 incorporates hash indexing into its
alpha-memories.

Table V shows the execution time in seconds of the three OPS5
programs we could run on an Encore Muitimax computer under
both the ParaOPS5 and OPSS5c. Since the systems are similar
except for the match code, we conclude that the additional speed
of the OPS5c system is due to match and thus the proportioning
of time within the production system cycle is not an anomalous
result.

Note that much of the work on parallelizing production system
execution has focuséd on parallelizing the match phase [22],
[7], [18]. The reduction in proportion of match time has serious
implications for those parallel systems that parallize only the
match. We conclude froin Amdahl’s law that introducing paral-
lelism into a well-constructed matcher will cause the remainder
of the production system cycle to become a serious sequential
bottleneck [19].

2From private discussions with Miland Tambe the parallel overhead for
ParaOPSS is about 20%. Examination of the assembler output for OPS5¢
executables indicates that the code is 2—4 times larger and slower than the
assembler sequences illustrated above.

V. OPTIMIZATION

A primary optimization in the execution of rule-based systems
is to minimize the size of intermediate join results when matching
a rule [23]. Optimization has been well studied in the context
of the RETE match. These approaches include static heuristics
applied at compile time, such as ART’s join from the right,
explicit user control over the network structure, as provided in
ECLPS, and automated systems that develop statistics from one
run and recompile in order to optimize later runs, as studied by
Ishida. [12], [4], [9].

Earlier TREAT work has argued that it is not worthwhile
to optimize join orders dynamically at run-time [17], [14]. In
our opinion a good compiler should optimize the first execution
of a program and do so without manual intervention. Manual
optimizations require the users to understand the underlying
implementation of the system and can make code harder to
maintain. Thus, OPS5c determines the join order statically at
compile time, without programmer intervention. A distinct join
order is generated for each possible seed element. Furthermore,
a distinct code sequence is produced for each seed. Producing
distinct code for each seed may appear to be an expensive
time/space tradeoff. Indeed, for large production systems, OPS5¢
can produce large executables. We have found that the expense
is strictly at compile time and that at run time the large program
images do not burden the Unix paging system.

Using OPS5c, we have experimented with three different
methods for join ordering, lexical ordering, an improved version
of seed-ordering, and a method based on a heuristic cost function.
In lexical order the joins are computed in lexical order including
the seed element. In lexical ordering, only a single join sequence
and code segment are produced per rule.

In seed-ordering the seed CE is considered first and the
remaining condition elements evaluated in their lexical order.
This works well since a single change to an alpha-memory
immediately binds its variables and restricts the search for
instantiations. Retaining lexical order for the remaining CE’s
retains any manual optimizations done by the programmer. The
improved version of seed-ordering pushes the filters for the
negated CE’s as early in the join sequence as possible. Forcing
negated CE’s early in the join order is a manual optimization
often suggested in the OPSS5 literature {3].

The heuristic optimization method builds a query graph repre-
senting the rule [23]. Each vertex in a rule query graph represents
a single CE. Edges are drawn between vertices representing CE’s
with common variables. Vertices are labeled with the size of the
CE’s alpha-memory. Edges are labeled with the selectivity of the
binding tests. The optimizer computes the cost of the computation
for each possible spanning tree of the query graph and returns
the path with the minimum cost. The problem of determining the
minimum cost spanning tree of a query graph has been shown to
be NP-complete [23]. We have found that the exhaustive search is
not computationally demanding for rules containing fewer than
12 CE’s.

It is not possible, a priori, to determine the size of the
alpha-memories and the selectivity of the binding tests. Rather
than derive cost information from earlier runs or resorting to
user supplied pragmas, the OPS5c heuristics assume that alpha-
memories are of constant size. A constant value for selectivity
was derived for each type of pattern predicate. For example, the
“not-equal” predicate is much more likely to be true than an
“equal” predicate. If there were multiple bindings to be tested
the product of their respective selectivities was used.

Table VI shows the number of comparisons required to bind
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TABLE VI
NUMBER OF COMPARISON FOR THREE DIFFERENT JOIN OPTIMIZATIONS
: Improvement - Improvement

Program Lexical Seed over Lexical Heuristic over Seed

Jig25s 59,373 38,189 0.64 38,144 0.99
Mapper 14,657 11,449 0.78 8695 0.75
Mesgen 168 167 0.99 178 1.07

Robot 8903 8672 0.97 8672 1.00
Tourney 99,649,965 1,781,954 0.02 1,463,701 0.82

Waltz 87,922 32,221 0.37 38,286 1.19

the variables of 6 sample OPS5 programs. These experiments
confirm earlier results that TREAT implementations should in-
clude at least seed optimization. The improvement due to the
heuristic method is inconsistent. The heuristic optimization im-
proved the performance of three of the programs and did not
improve or reduce the performance of three others. Detailed
examination of Waltz and Mesgen revealed the failure of the
heuristic cost function was due to the assumption that all the
alpha-memories were identical in size which incorrectly led to
the domination of the heuristic measures of selectivity.

Note that the heuristic optimization demonstrates only a mod-
est span of improvement over seed ordering, 25% to —19%.
These results are on a similar scale as those reported in related
research [9], [17]. Recall that these results optimize only the
time spent in the join phase of the match. We tonclude that the
gains provided by detailed join optimization are not likely to
substantially improve the performance of the system as a whole
and that it is likely that efforts to improve performance would
be better directed at other aspects of the system.

V1. CoNcLUSIONS

The OPS5c¢ compiler was crafted to integrate well with each
aspect of a computer system’s memory organization. By using
the TREAT algorithm we are able to generate compact loop
structures to perform matching such that most of the data accesses
are to the fast registers of the processor. Dynamic memory man-
agement was handled by a fixed block allocator. The executable
object code was organized to minimize paging overhead. The
result is that OPS5c produces the fastest executable OPS5 code
of any sequential system. The combination of the optimization
and compilation techniques has reduced the proportion of time
spent in the match phase to below 90% of the execution time
and in many examples to below 50%. This proportion raises a
serious issue for those projects that have explored accelerating
production system execution by applying parallelism exclusively
to the match phase.

Our results on using a heuristic cost function for optimizing
join orders confirms other researchers results that a rule optimizer
must consider the cardinality of all of the alpha memories to make
any ordering decisions. Given the reduced proportion of the time
spent in match, particularly in the join phase of the match, efforts
to optimize the execution speed of the system are likely to be
better spent in other areas. These areas may include organizing
the alpha memories for fast access rather than as linked lists and
optimizing the compiling the RHS’s of the rules to reduce the
time in the act phase.
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